IMEMR
66.92
Volume 5, Issue 4 (2024)                   J Clinic Care Skill 2024, 5(4): 215-224 | Back to browse issues page
Article Type:
Systematic Review |
Subject:

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Seyed-Nezhad M, Yousefianzadeh O, Mirzaee M, Moradi-Joo M. Potential of Artificial Intelligence in Improvement of the Clinical, Educational, Decision-Making, Information and Research Skills of Nurses. J Clinic Care Skill 2024; 5 (4) :215-224
URL: http://jccs.yums.ac.ir/article-1-303-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- National Center for Health Insurance Research, Tehran, Iran
2- “Department of Health Information Technology, School of Public Health” and “Health Technology Assessment & Medical Informatic Research Center”, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3- Department of Internal Surgery, School of Nursing and Midwifery, Yasuj University of Medical Sciences, Yasuj, Iran
4- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
* Corresponding Author Address: Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Shahid Motahari Boulevard, Yasuj, Iran. Postal Code: 7491786766 (moradijoo@gmail.com)
Abstract   (567 Views)
Aims: In the ever-evolving healthcare landscape, nurses are at the forefront of patient care. Nurses’ procedural skills are the lifeblood of quality care. Artificial Intelligence (AI) is a useful game changer that can change how we approach nursing practice. This scoping review was conducted with the aim of determining the potential of AI in improving nurses’ clinical, educational, decision-making, informational, and research skills.
Information & Methods: Eight electronic databases (PubMed, Scopus, Web of Science, Embase, CINAHL, ProQuest, Microsoft Academic, and OpenGrey) were searched to find all studies (peer-reviewed and grey literature) published up to September 2024 using the keywords AI, nursing skills, and related terms. The Google Scholar search engine was used to find relevant sources and complete the search coverage. Data collected from included studies on each role that AI could play in nurses' skills were analyzed using narrative methods.
Findings: Finally, 30 review studies were included. Accordingly, AI has a beneficial effect on six main themes (education, decision, clinical practice, research, information, and psychiatric nursing) and 33 subthemes.
Conclusion: AI plays a fundamental role in improving the clinical, educational, decision-making, informational, and research skills of nurses.
Keywords:

References
1. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. [Link] [DOI:10.1038/s41591-018-0300-7]
2. Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507-9. [Link] [DOI:10.1056/NEJMp1702071]
3. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-6. [Link] [DOI:10.1038/s41591-018-0307-0]
4. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-58. [Link] [DOI:10.1056/NEJMra1814259]
5. Wang F, Preininger A. AI in health: State of the art, challenges, and future directions. Yearb Med Inform. 2019;28(1):16-26. [Link] [DOI:10.1055/s-0039-1677908]
6. Hidayaturrohman QA, Hanada E. Predictive analytics in heart failure risk, readmission, and mortality prediction: A review. Cureus. 2024;16(11):e73876. [Link] [DOI:10.7759/cureus.73876]
7. Akramovna XD. The role of artificial intelligence in personalized learning. Hamkor Konferensiyalar. 2024;1(6):144-7. [Link]
8. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. [Link] [DOI:10.1038/nature21056]
9. Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. [Link] [DOI:10.1080/1364557032000119616]
10. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467-73. [Link] [DOI:10.7326/M18-0850]
11. Choi J, Woo S, Ferrell A. Artificial intelligence assisted telehealth for nursing: A scoping review. J Telemed Telecare. 2025;31(1):140-9. [Link] [DOI:10.1177/1357633X231167613]
12. Ventura-Silva J, Martins MM, Trindade LdL, Faria AdCA, Pereira S, Zuge SS, et al. Artificial intelligence in the organization of nursing care: A scoping review. Nurs Rep. 2024;14(4):2733-45. [Link] [DOI:10.3390/nursrep14040202]
13. Montejo L, Fenton A, Davis G. Artificial intelligence (AI) applications in healthcare and considerations for nursing education. Nurse Educ Pract. 2024;80:104158. [Link] [DOI:10.1016/j.nepr.2024.104158]
14. Li H, Zhu G, Zhong Y, Zhang Z, Li S, Liu J. Applications of artificial intelligence in psychiatric nursing: A scope review. Stud Health Technol Inform. 2024;315:74-80. [Link] [DOI:10.3233/SHTI240109]
15. Alghamdi HK, Alharbi RM, Alharbi NM, Bakri AA, Moafa AM, Alaajmi SO, et al. Artificial intelligence and nursing care: Revolutionizing patient diagnosis and treatment strategies: Most recent literature review based study. J Int Crisis Risk Commun Res. 2024;7(11):1375-92. [Link]
16. Zhou Y, Li SJ, Tang XY, He YC, Ma HM, Wang AQ, et al. Using ChatGPT in nursing: Scoping review of current opinions. JMIR Med Educ. 2024;10(1):e54297. [Link] [DOI:10.2196/54297]
17. Koo TH, Zakaria AD, Ng JK, Leong XB. Systematic review of the application of artificial intelligence in healthcare and nursing care. Malays J Med Sci. 2024;31(5):135-42. [Link] [DOI:10.21315/mjms2024.31.5.9]
18. Yasin YM, Al-Hamad A, Metersky K, Kehyayan V. Incorporation of artificial intelligence into nursing research: A scoping review. Int Nurs Rev. 2024. [Link] [DOI:10.32920/28646651]
19. Fernandes S, Von Gunten A, Verloo H. Using AI-based technologies to help nurses detect behavioral disorders: Narrative literature review. JMIR Nurs. 2024;7(1):e54496. [Link] [DOI:10.2196/54496]
20. Ruksakulpiwat S, Thorngthip S, Niyomyart A, Benjasirisan C, Phianhasin L, Aldossary H, et al. A systematic review of the application of artificial intelligence in nursing care: Where are we, and what's next?. J Multidiscip Healthc. 2024;17:1603-16. [Link] [DOI:10.2147/JMDH.S459946]
21. Zhou T, Luo Y, Li J, Zhang H, Meng Z, Xiong W, et al. Application of artificial intelligence in oncology nursing: A scoping review. Cancer Nurs. 2024;47(6):436-50. [Link] [DOI:10.1097/NCC.0000000000001254]
22. Park GE, Kim H, Go UR. Generative artificial intelligence in nursing: A scoping review. Collegian. 2024;31(6):428-36. [Link] [DOI:10.1016/j.colegn.2024.10.004]
23. Lora L, Foran P. Nurses' perceptions of artificial intelligence (AI) integration into practice: An integrative review. J Perioper Nurs. 2024;37(3):5. [Link] [DOI:10.26550/2209-1092.1366]
24. Lifshits I, Rosenberg D. Artificial intelligence in nursing education: A scoping review. Nurse Educ Pract. 2024;80:104148. [Link] [DOI:10.1016/j.nepr.2024.104148]
25. Lindley LC, Policastro CN, Dosch B, Ortiz Baco JG, Cao CQ. Artificial intelligence and the national violent death reporting system: A rapid review. Comput Inform Nurs. 2024;42(5):369-76. [Link] [DOI:10.1097/CIN.0000000000001124]
26. Alanazi EAL, Alanazi SAT, Alanazi AIL, Alenezi FHJ, Alrawili NQA, Alruwaili MQM. Perception of nurses on artificial intelligence (AI) and its role in nursing care in Saudi Arabia: A systematic review. J Int Crisis Risk Commun Res. 2024;7(10):837-45. [Link]
27. Nashwan AJ, Gharib S, Alhadidi M, El-Ashry AM, Alamgir A, Al-Hassan M, et al. Harnessing artificial intelligence: Strategies for mental health nurses in optimizing psychiatric patient care. Issues Ment Health Nurs. 2023;44(10):1020-34. [Link] [DOI:10.1080/01612840.2023.2263579]
28. O'Connor S, Yan Y, Thilo FJS, Felzmann H, Dowding D, Lee JJ. Artificial intelligence in nursing and midwifery: A systematic review. J Clin Nurs. 2023;32(13-14):2951-68. [Link] [DOI:10.1111/jocn.16478]
29. Mohanasundari SK, Kalpana M, Madhusudhan U, Vasanthkumar K, B R, Singh R, et al. Can artificial intelligence replace the unique nursing role?. Cureus. 2023;15(12):e51150. [Link] [DOI:10.7759/cureus.51150]
30. Martinez-Ortigosa A, Martinez-Granados A, Gil-Hernández E, Rodriguez-Arrastia M, Ropero-Padilla C, Roman P. Applications of artificial intelligence in nursing care: A systematic review. J Nurs Manag. 2023;2023(1):3219127. [Link] [DOI:10.1155/2023/3219127]
31. Yelne S, Chaudhary M, Dod K, Sayyad A, Sharma R. Harnessing the power of AI: A comprehensive review of its impact and challenges in nursing science and healthcare. Cureus. 2023;15(11):e49252. [Link] [DOI:10.7759/cureus.49252]
32. O'Connor S, Gasteiger N, Stanmore E, Wong DC, Lee JJ. Artificial intelligence for falls management in older adult care: A scoping review of nurses' role. J Nurs Manag. 2022;30(8):3787-801. [Link] [DOI:10.1111/jonm.13853]
33. Ng ZQP, Ling LYJ, Chew HSJ, Lau Y. The role of artificial intelligence in enhancing clinical nursing care: A scoping review. J Nurs Manag. 2022;30(8):3654-74. [Link] [DOI:10.1111/jonm.13425]
34. Chang CY, Jen HJ, Su WS. Trends in artificial intelligence in nursing: Impacts on nursing management. J Nurs Manag. 2022;30(8):3644-53. [Link] [DOI:10.1111/jonm.13770]
35. Hwang GJ, Tang KY, Tu YF. How artificial intelligence (AI) supports nursing education: profiling the roles, applications, and trends of AI in nursing education research (1993-2020). Interact Learn Environ. 2024;32(1):373-92. [Link] [DOI:10.1080/10494820.2022.2086579]
36. Seibert K, Domhoff D, Bruch D, Schulte-Althoff M, Fürstenau D, Biessmann F, et al. Application scenarios for artificial intelligence in nursing care: Rapid review. J Med Internet Res. 2021;23(11):e26522. [Link] [DOI:10.2196/26522]
37. Buchanan C, Howitt ML, Wilson R, Booth RG, Risling T, Bamford M. Predicted influences of artificial intelligence on nursing education: Scoping review. JMIR Nurs. 2021;4(1):e23933. [Link] [DOI:10.2196/23933]
38. Buchanan C, Howitt ML, Wilson R, Booth RG, Risling T, Bamford M. Predicted influences of artificial intelligence on the domains of nursing: Scoping review. JMIR Nurs. 2020;3(1):e23939. [Link] [DOI:10.2196/23939]
39. Lu SC, Delaney C, Tracy MF, Chi CL, Monsen K. Informatics and artificial intelligence approaches that promote use of integrative health therapies in nursing practice: A scoping review. OBM Integr Complement Med. 2020;5(1):006. [Link] [DOI:10.21926/obm.icm.2001006]
40. Kaswan KS, Gaur L, Dhatterwal JS, Kumar R. AI-based natural language processing for the generation of meaningful information electronic health record (EHR) data. In: Advanced AI techniques and applications in bioinformatics. Boca Raton: CRC Press; 2021. p. 41-86. [Link] [DOI:10.1201/9781003126164-3]
41. Mehta N, Pandit A, Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019;100:103311. [Link] [DOI:10.1016/j.jbi.2019.103311]
42. Rathore MM, Shah SA, Shukla D, Bentafat E, Bakiras S. The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access. 2021;9:32030-52. [Link] [DOI:10.1109/ACCESS.2021.3060863]