IMEMR
66.92
Volume 3, Issue 4 (2022)                   J Clinic Care Skill 2022, 3(4): 177-182 | Back to browse issues page
Article Type:
Original Research |

Print XML PDF HTML


History

How to cite this article
Nouripour Sisakht S, Razmjoue D, Sadeghi Mansourkhani H, Hashemi N, kianfar F, Salahi M, et al . Anti-Planktonic and Anti-Biofilm Formation Activities of the Essential Oil and Hydroalcoholic Extract of Myrtus communis L. Leaves and Fruits Against Clinical Candida species. J Clinic Care Skill 2022; 3 (4) :177-182
URL: http://jccs.yums.ac.ir/article-1-148-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
2- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
Abstract   (1668 Views)
Aims: Because of the increasing prevalence of fungal infections and antifungal resistance, researchers are seeking new antifungal medications and alternatives. This study aimed to assess the antifungal and anti-biofilm propertie of Myrtus communis L. essential oil and effect of hydroalcoholic extract on Candida species isolated from clinical specimens.
Materials & Methods: A total of 65 Candida species isolated from clinical samples were evaluated in this study. The chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Besides, the antifungal and biofilm activity of M. communis against Candida isolates was compared with that of fluconazole
Findings: A total of 22 compounds, displaying 99.88% of the Myrtus Communis leaves OE, were identified and the major components were found to be α-pinene (51.22%), eucalyptol (16.88%), linalool (15.92%), and linalool acetate (4.03%). The main components of fruit EO were nonadecane (44.00%), heneicosane (19.60%), α-pinene (12.80%), and eucalyptol (10.08%). The minimum inhibitory concentration (MIC) of the hydroalcoholic extract of M. communis was lower against C. parapsilosis compared to C. albicans and C. glabrata. Biofilm formation in different Candida strains was inhibited at M. communis essential oil concentrations of 2.5-0.0156µl/mL.
Conclusion: M. communis exhibited considerable antifungal effects against Candida species. Also, the inhibitory effect of M. communis essential oil against C. albicans biofilm formation was higher than that of fluconazole.

 
Keywords:

References
1. Zupanić-Krmek D, Nemet D. Systemic fungal infections in immunocompromised patients. Acta Med Croatica. 2004;58(4):251-61. [link]
2. Badiee P, Hashemizadeh Z. Opportunistic invasive fungal infections: Diagnosis and clinical management. Indian J Med Res. 2014;139(2):195. [link]
3. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. [DOI:10.1179/2047773215Y.0000000030] [PMID] [PMCID]
4. Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: A current perspective. Infect Drug Resist. 2017;10(31):237-45. [DOI:10.2147/IDR.S118892] [PMID] [PMCID]
5. Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: Insights from a focus-group study in Germany. BMC Complement Altern Med. 2018;18(1):1-9. [DOI:10.1186/s12906-018-2160-6] [PMID] [PMCID]
6. Sardi JCO, Almeida AMF, Giannini MJSM. New antimicrobial therapies used against fungi present in subgingival sites- a brief review. Arch oral Biol. 2011;56(10):951-9. [DOI:10.1016/j.archoralbio.2011.03.007] [PMID]
7. Baharvand-Ahmadi B, Bahmani M, Naghdi N, Saki K, Baharvand-Ahmadi S, Rafieian-Kopaei M. Review on phytochemistry, therapeutic and pharmacological effects of myrtus (Myrtus communis). Der Pharmacia Lettre. 2015;7(11):160-5. [link]
8. Shahidi Bonjar G, Aghighi S, Karimi Nik A. Antibacterial and antifungal survey in plants used in indigenous herbal-medicine of south east regions of Iran. Res J Biol Sci. 2004;4(3):405-12. [DOI:10.3923/jbs.2004.405.412]
9. Cannas S, Molicotti P, Usai D, Maxia A, Zanetti S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat Prod Res. 2014;28(23):2173-7. [DOI:10.1080/14786419.2014.925892] [PMID]
10. Saharkhiz MJ, Motamedi M, Zomorodian K, Pakshir K, Miri R, Hemyari K. Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. ISRN Pharm. 2012;2012:718645. [DOI:10.5402/2012/718645] [PMID] [PMCID]
11. Rinanda T, Isnanda RP, Zulfitri. Chemical analysis of Red Ginger (Zingiber officinale roscoe var rubrum) essential oil and Its anti-biofilm activity against candida albicans. Nat Prod Communications. 2018;13(12):1934578X1801301206. [DOI:10.1177/1934578X1801301206]
12. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173. [DOI:10.3389/fmicb.2016.02173] [PMID] [PMCID]
13. Gharaghani M, Ahmadi B, Taheripour Sisakht M, Ilami O, Aramesh S, Mouhamadi F, et al. Identification of Candida species isolated from vulvovaginal candidiasis patients by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in Yasuj southwestern Iran. Jundishapur J Microbiol. 2018;11(8). [DOI:10.5812/jjm.65359]
14. Sabz G, Gharaghani M, Mirhendi H, Ahmadi B, Gatee MA, Sisakht MT, et al. Clinical and microbial epidemiology of otomycosis in the city of Yasuj, Southwest Iran, revealing Aspergillus tubingensis as the dominant causative agent. J Med Microbiol. 2019;68(4):585-90. [DOI:10.1099/jmm.0.000948] [PMID]
15. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry: Allured Publishing Corporation Carol Stream: Illinois;2007. [link]
16. Salari S, Seddighi NS, Almani PGN. Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with Fluconazole: an in vitro study. J Mycol Med. 2018;28(1):23-8. [DOI:10.1016/j.mycmed.2018.02.007] [PMID]
17. Zomorodian K, Moein M, Lori ZG, Ghasemi Y, Rahimi MJ, Bandegani A, et al. Chemical composition and antimicrobial activities of the essential oil from Myrtus communis leaves. J Essent Oil Bear Plants. 2013;16(1):76-84. [DOI:10.1080/0972060X.2013.764183]
18. Messaoud C, Zaouali Y, Salah AB, Khoudja M, Boussaid M. Myrtus communis in Tunisia: variability of the essential oil composition in natural populations. Flavour Fragr J. 2005;20(6):577-82. [DOI:10.1002/ffj.1490]
19. Rasooli I, Moosavi M, Rezaee MB, Jaimand K. Susceptibility of microorganisms to Myrtus communis L. essential oil and its chemical composition. JAST. 2002;4(3-4):127-33. [Persian] [link]
20. Barac A, Donadu M, Usai D, Spiric VT, Mazzarello V, Zanetti S, et al. Antifungal activity of Myrtus communis against Malassezia sp. isolated from the skin of patients with pityriasis versicolor. Infection. 2018;46(2):253-7. [DOI:10.1007/s15010-017-1102-4] [PMID]
21. Wannes WA, Mhamdi B, Marzouk B. Essential oil composition of two myrtus communis L varieties grown in North Tunisia. Ital J Biochem. 2007;56(2):180-6. [link]
22. Bouzouita N, Kachouri F, Hamdi M, Chaabouni MM. Antimicrobial activity of essential oils from Tunisian aromatic plants. Flavour Fragrance J. 2003;18(5):380-3. [DOI:10.1002/ffj.1200]
23. Qader KO, Al-Saadi SAM, Al-Saadi TA. Chemical composition of Myrtus communis L (Myrtaceae) fruits. J Appl Life Sci Int. 2017;12(3):1-8. [DOI:10.9734/JALSI/2017/33746]
24. Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L essential oils. Phytochemistry. 2006;67(12):1249-55. [DOI:10.1016/j.phytochem.2006.04.025] [PMID]
25. Mahboubi M, Bidgoli FG. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans. Phytomedicine. 2010;17(10):771-4. [DOI:10.1016/j.phymed.2010.01.016] [PMID]
26. Azad Hayayei D, Emami M, Adimi P, Amin G. Investigation of antifungal effects of Rudbar plant leaf extract on some fungi Dermatophytes and saprophytes under conditions. Knowledge of Microbiol. 2009;2(5):27-31. [Persian] [link]
27. Tuberoso CI, Barra A, Angioni A, Sarritzu E, Pirisi FM. Chemical composition of volatiles in Sardinian myrtle (Myrtus communis L.) alcoholic extracts and essential oils. J Agric Food Chem. 2006;54(4):1420-6. [DOI:10.1021/jf052425g] [PMID]
28. Kordali S, Usanmaz A, Cakir A, Komaki A, Ercisli S. Antifungal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chem Biodivers. 2016;13(1):77-84. [DOI:10.1002/cbdv.201500018] [PMID]
29. Sadeghi Nejad B, Erfani Nejad M, Yusef Naanaie S, Zarrin M. Antifungal and antibacterial activities of polyherbal toothpaste against oral pathogens, in vitro. Curr Med Mycol. 2014;4(2):21-6. [DOI:10.18502/cmm.4.2.65] [PMID] [PMCID]
30. Mahmoudabadi AZ, Zarrin M, Kiasat N. Biofilm formation and susceptibility to amphotericin B and fluconazole in Candida albicans. Jundishapur J Microbiol. 2014;7(7):e17105. [DOI:10.5812/jjm.17105] [PMID] [PMCID]
31. Mishra NN, Ali S, Shukla PK. Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine. Braz J Infect Dis. 2014;18(3):287-93. [DOI:10.1016/j.bjid.2013.09.006] [PMID] [PMCID]
32. Pongrácz J, Benedek K, Juhász E, Iván M, Kristóf K. In vitro biofilm production of Candida bloodstream isolates: any association with clinical characteristics? J Med Microbiol. 2016;65(4):272-7. [DOI:10.1099/jmm.0.000207] [PMID]