IMEMR
66.92
Volume 5, Issue 1 (2024)                   J Clinic Care Skill 2024, 5(1): 41-48 | Back to browse issues page
Article Type:
Original Research |

Print XML PDF HTML Full-Text (HTML)

Ethics code: IR.ZUMS.REC.1398.208


History

How to cite this article
Zakerian Zadeh A, Dadashi M, Maghbooli M, Zarei F, Zakeryanzade R. Assessment of Depression Symptoms, Motor Learning, and Cognitive Function after Transcranial Direct Current Stimulation in Ischemic Stroke. J Clinic Care Skill 2024; 5 (1) :41-48
URL: http://jccs.yums.ac.ir/article-1-227-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Clinical Psychology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2- “Department of Neurology, School of Medicine” and “Vali-e-Asr Hospital”, Zanjan University of Medical Sciences, Zanjan, Iran
3- Department of Psychology and Educational Sciences, Faculty of Humanities, Yasuj Branch, Islamic Azad University, Yasuj, Iran
* Corresponding Author Address: Beheshti Hospital, Arq Squar, Zanjan, Iran. Postal code: 45136-15788 (psy.moshen@gmail.com)
Abstract   (1028 Views)
Aims: Stroke leads to many symptoms, such as defects in motor, sensation, language, and cognitive functions, which may help patients recover sooner using complementary techniques. Therefore, this study was conducted to evaluate depression symptoms, motor learning, and cognitive function after transcranial direct current stimulation in patients with ischemic stroke.
Materials & Methods: The current randomized controlled clinical trial was conducted on patients with ischemic stroke in Zanjan City in 2019-2020. 35 patients were randomly selected and assigned to the tDCS (12), Sham (12), and Control (11) groups. The Fugl-Meyer Assessment, Hamilton depression symptoms test, Montreal Cognitive Assessment, and Mini-Mental State Examination were used for evaluation. The first group received consecutive anodal stimulation in M1damH+Left-DLPFC areas, 12 sessions of 60 minutes, the second group received Sham-tDCS, and the third group (the control group) did not receive any intervention. The Data were analyzed using descriptive statistics and multivariate covariance analysis using SPSS 23 software.
Findings: A significant difference was observed between the study groups after the intervention and one month later in motor function, depression symptoms, and cognitive function (p=0.001). According to the paired comparison, the differences between the tDCS group and each of the sham and control groups were bigger. Still, no significant difference was detected between the control and sham groups in these outcome variables.
Conclusion: tDCS leads to the improvement of motor learning, cognitive functions, and depression symptoms in stroke patients, and its effects remain significant after the intervention.

Keywords:

References
1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5:70. [Link] [DOI:10.1038/s41572-019-0118-8]
2. Shajahan S, Sun L, Harris K, Wang X, Sandset EC, Yu AY, et al. Sex differences in the symptom presentation of stroke: A systematic review and meta-analysis. Int J Stroke. 2023;18(2):144-53. [Link] [DOI:10.1177/17474930221090133]
3. Al-Hussain F, Nasim E, Iqbal M, Altwaijri N, Asim N, Yoo WK, et al. The effect of transcranial direct current stimulation combined with functional task training on motor recovery in stroke patients. Medicine. 2021;100(6):e24718. [Link] [DOI:10.1097/MD.0000000000024718]
4. Verstraeten S, Mark R, Sitskoorn M. Motor and cognitive impairment after stroke: A common bond or a simultaneous deficit?. Stroke Res Ther. 2016;1(1). [Link]
5. Draaisma LR, Wessel MJ, Hummel FC. Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci Lett. 2020;719:133678. [Link] [DOI:10.1016/j.neulet.2018.06.047]
6. Chi X, Wang L, Liu H, Zhang Y, Shen W. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies. Front Neurosci. 2023;17:1123817. [Link] [DOI:10.3389/fnins.2023.1123817]
7. Wood H. Remote white matter integrity influences cognitive function after stroke. Nat Rev Neurol. 2016;12:616. [Link] [DOI:10.1038/nrneurol.2016.148]
8. Kapoor A, Lanctôt KL, Bayley M, Kiss A, Herrmann N, Murray BJ, et al. "Good outcome" isn't good enough: Cognitive impairment, depressive symptoms, and social restrictions in physically recovered stroke patients. Stroke. 2017;48(6):1688-90. [Link] [DOI:10.1161/STROKEAHA.117.016728]
9. Robinson RG. Poststroke depression: Prevalence, diagnosis, treatment, and disease progression. Biol Psychiatry. 2003;54(3):376-87. [Link] [DOI:10.1016/S0006-3223(03)00423-2]
10. Williams LS. Depression and stroke: Cause or consequence?. Semin Neurol. 2005;25(4):396-409. [Link] [DOI:10.1055/s-2005-923534]
11. Vataja R, Pohjasvaara T, Leppävuori A, Mäntylä R, Aronen HJ, Salonen O, et al. Magnetic resonance imaging correlates of depression after ischemic stroke. Arch Gen Psychiatry. 2001;58(10):925-31. [Link] [DOI:10.1001/archpsyc.58.10.925]
12. Lassalle-Lagadec S, Sibon I, Dilharreguy B, Renou P, Fleury O, Allard M. Subacute default mode network dysfunction in the prediction of post-stroke depression severity. Radiology. 2012;264(1):218-24. [Link] [DOI:10.1148/radiol.12111718]
13. Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment: Epidemiology, mechanisms and management. Ann Transl Med. 2014;2(8):80. [Link]
14. Vergallito A, Varoli E, Pisoni A, Mattavelli G, Del Mauro L, Feroldi S, et al. State-dependent effectiveness of cathodal transcranial direct current stimulation on cortical excitability. NeuroImage. 2023;277:120242. [Link] [DOI:10.1016/j.neuroimage.2023.120242]
15. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimul. 2016;9(5):641-61. [Link] [DOI:10.1016/j.brs.2016.06.004]
16. Razza LB, Palumbo P, Moffa AH, Carvalho AF, Solmi M, Loo CK, et al. A systematic review and meta‐analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety. 2020;37(7):594-608. [Link] [DOI:10.1002/da.23004]
17. Suen PJ, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, et al. Association between tDCS computational modeling and clinical outcomes in depression: Data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):101-10. [Link] [DOI:10.1007/s00406-020-01127-w]
18. Jog MA, Anderson C, Kubicki A, Boucher M, Leaver A, Hellemann G, et al. Transcranial direct current stimulation (tDCS) in depression induces structural plasticity. Sci Rep. 2023;13:2841. [Link] [DOI:10.1038/s41598-023-29792-6]
19. Kaminski E, Carius D, Knieke J, Mizuguchi N, Ragert P. Complex sequential learning is not facilitated by transcranial direct current stimulation over DLPFC or M1. Eur J Neurosci. 2024. [Link] [DOI:10.1111/ejn.16255]
20. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899-901. [Link] [DOI:10.1212/WNL.57.10.1899]
21. Šimko P, Pupíková M, Gajdoš M, Klobušiaková P, Vávra V, Šimo A, et al. Exploring the impact of intensified multiple session tDCS over the left DLPFC on brain function in MCI: A randomized control trial. Sci Rep. 2024;14:1512. [Link] [DOI:10.1038/s41598-024-51690-8]
22. Navarro‐López V, Del‐Valle‐Gratacós M, Carratalá‐Tejada M, Cuesta-Gómez A, Fernández-Vázquez D, Molina‐Rueda F. The efficacy of transcranial direct current stimulation (tDCS) on upper extremity motor function after stroke: A systematic review and comparative meta‐analysis of different stimulation polarities. PM R. 2023. [Link] [DOI:10.1002/pmrj.13088]
23. Tedla JS, Sangadala DR, Reddy RS, Gular K, Kakaraparthi VN, Asiri F. Transcranial direct current stimulation (tDCS) effects on upper limb motor function in stroke: An overview review of the systematic reviews. Brain Inj. 2023;37(2):122-33. [Link] [DOI:10.1080/02699052.2022.2163289]
24. Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: A systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(4):345-55. [Link] [DOI:10.1136/jnnp-2015-311242]
25. Yamaguchi T, Moriya K, Tanabe S, Kondo K, Otaka Y, Tanaka S. Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers. J Neuroeng Rehabil. 2020;17:23. [Link] [DOI:10.1186/s12984-020-00665-7]
26. Adkins TJ, Lee TG. Reward modulates cortical representations of action. NeuroImage. 2021;228:117708. [Link] [DOI:10.1016/j.neuroimage.2020.117708]
27. Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014;86:1-9. [Link] [DOI:10.1016/j.bandc.2014.01.008]
28. Fujiyama H, Van Soom J, Rens G, Cuypers K, Heise KF, Levin O, et al. Performing two different actions simultaneously: The critical role of interhemispheric interactions during the preparation of bimanual movement. Cortex. 2016;77:141-54. [Link] [DOI:10.1016/j.cortex.2016.02.007]
29. Delavar A. Theoretical and practical research in the humanities and social sciences. Tehran: Roshd Publication; 2015. [Link]
30. Rabadi M, Aston C. Effect of transcranial direct current stimulation on severely affected arm-hand motor function in patients after an acute ischemic stroke (667). Neurology. 2020;94(15). [Link] [DOI:10.1212/WNL.94.15_supplement.667]
31. Dukas R. Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst. 2004;35:347-74. [Link] [DOI:10.1146/annurev.ecolsys.35.112202.130152]
32. Nejati V. Cognitive abilities questionnaire: Development and evaluation of psychometric properties. Adv Cogn Sci. 2013;15(2):11-9. [Persian] [Link]
33. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447-54. [Link] [DOI:10.1093/ptj/73.7.447]
34. Karimi E, Kalantary M, Shafiee Z, Tabatabaiee SM. Inter-rater reliability of the action research arm test & upper limb related fugel meyer test in adult with CVA from Qazvin. J Res Rehabil Sci. 2014;10(1):67-76. [Persian] [Link]
35. Reynolds WM, Kobak KA. Reliability and validity of the Hamilton Depression Inventory: A paper-and-pencil version of the Hamilton Depression Rating Scale Clinical Interview. Psychol Assess. 1995;7(4):472-83. [Link] [DOI:10.1037/1040-3590.7.4.472]
36. Julayanont P, Nasreddine ZS. Montreal Cognitive Assessment (MoCA): Concept and clinical review. In: Larner AJ, editor. Cognitive screening instruments. Cham: Springer; 2017. p. 139-95. [Link] [DOI:10.1007/978-3-319-44775-9_7]
37. Sikaroodi H, Majidi A, Samadi S, Shirzad H, Aghdam H, Azimi Kia A, et al. Evaluating reliability of the montreal cognitive assessment test and its agreement with neurologist diagnosed among patients with cognitive complaints. J Police Med. 2012;1(1):11-7. [Persian] [Link]
38. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3(3):CD009645. [Link] [DOI:10.1002/14651858.CD009645.pub3]
39. Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: A network meta-analysis of randomized controlled trials. J Neuroeng Rehabil. 2017;14:95. [Link] [DOI:10.1186/s12984-017-0301-7]
40. Oveisgharan S, Organji H, Ghorbani A. Enhancement of motor recovery through left dorsolateral prefrontal cortex stimulation after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(1):185-91. [Link] [DOI:10.1016/j.jstrokecerebrovasdis.2017.08.026]
41. Harvey RL, Winstein CJ, Everest Trial Group. Design for the everest randomized trial of cortical stimulation and rehabilitation for arm function following stroke. Neurorehabil Neural Repair. 2009;23(1):32-44. [Link] [DOI:10.1177/1545968308317532]
42. Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis. Clin Neurophysiol. 2012;123(4):644-57. [Link] [DOI:10.1016/j.clinph.2011.08.029]
43. Sriraman A, Oishi T, Madhavan S. Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 2014;1581:23-9. [Link] [DOI:10.1016/j.brainres.2014.07.021]
44. Berryhill ME, Martin D. Cognitive effects of transcranial direct current stimulation in healthy and clinical populations: An overview. J ECT. 2018;34(3):e25-35. [Link] [DOI:10.1097/YCT.0000000000000534]
45. Shiozawa P, Cordeiro Q, Cho HJ, Trevizol AP, Brietzke E. A critical review of trials of transcranial direct current stimulation and trigeminal nerve stimulation for depression: The issue of treatment-emergent mania. Trends Psychiatry Psychother. 2017;39(1):48-53. [Link] [DOI:10.1590/2237-6089-2016-0027]
46. Marshall L, Mölle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neurosci. 2005;6:23. [Link] [DOI:10.1186/1471-2202-6-23]
47. Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49(5):1195-205. [Link] [DOI:10.1016/j.cortex.2012.05.022]
48. Javadi AH, Cheng P. Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimul. 2013;6(4):668-74. [Link] [DOI:10.1016/j.brs.2012.10.007]